Synthesis and properties of dimethano-bridged tetradehydro[21]-, -[23]- and -[25] annulenones

Jūro Ojima, ${ }^{,, \alpha}$ Naoki Hiraiwa, ${ }^{,}$Shiro Kondo, ${ }^{a}$ Kaori Asano, ${ }^{a}$ Chiaki Sakon, ${ }^{a}$ Hiroyuki Higuchi, ${ }^{a}$ Katsuya Inoue ${ }^{b}$ and Gaku Yamamoto ${ }^{\text {*,b }}$
${ }^{a}$ Department of Chemistry, Faculty of Science, Tovama University, Gofuku, Toyama 930, Japan
${ }^{\text {b }}$ Department of Chemistry, School of Science, Kitasato University, Kitasato, Sagamihara 228, Japan

Abstract

Syntheses of 7,8,9,10-tetradehydro-1,6:11,16-dimethano[21]annulen-19-one 11, 7,8,9,10-tetradehydro-18-methyl-1,6:11,16-dimethano[21] annulen-19-one 12, 7,8,9,10-tetradehydro-1,6:11,16-dimethano[23]annu-len-19-one 13 and 7,8,9,10-tetradehydro-1,6:11,16-dimethano[25]annulen-21-one 14 are described. The influence of an introduction of two methano-bridges upon the structure and tropicity of the tetradehydro-[21]-, -[23]- and -[25]annulenone ring systems is discussed in view of the ${ }^{1} \mathrm{H}$ NMR and electronic spectra of these annulenones as well as those of the corresponding monocyclic annulenones.

Introduction

It has been confirmed that the dimethyl- or trimethyltetradehydroannulenones 1-7 with 13- to 25 -membered rings show the alternation of the tropic nature between $(4 n+2) \pi$ and $4 n \pi$-electron systems arising from polarization of the carbonyl group. ${ }^{1}$ However, annulenone derivatives showing the ring-current effect in which the ring size is larger than a 25 membered one are not yet known. ${ }^{2}$ Since a cycloheptatriene ring has three conjugated double bonds and its presence in the final conjugated systems should not seriously disturb the π electron distribution, the dimethano-bridged [21]annulenones 11 and $\mathbf{1 2}$ which are formally derived from the lowest member of the monocyclic annulenones, the tetradehydro[13]annulenone 1, by replacement of two double bonds with two cycloheptatriene rings, has the same number of double bonds as the monocyclic tetradehydro[21] annulenone 5 . Thus, incorporation of cyclohepta-1,3,5-triene rings would present routes to prepare a larger π-electron systems.

In the previous paper we confirmed that the monomethanobridged tetradehydroannulenones 8-10 have tropic nature, although their tropicity was smaller than those of the corresponding monocyclic tetradehydroannulenones 3-5 with the same number of peripherally conjugated π-electrons. ${ }^{3}$ Therefore taking advantage of dimethano-bridging, we expected that tetradehydrodimethanoannulenones with a greater number of π-electrons than compound 7 would possibly be prepared. To test this expectation, we examined the properties of the title compounds, dimethano-bridged tetradehydro[21]-11 and 12,-[23]-13 and -[25]annulenone $14 .{ }^{4}$

Results and discussion

Synthesis

The syntheses of the annulenones 11-14 were carried out according to the reported procedure ${ }^{5-7}$ as illustrated in Scheme 1 , employing the construction of a ketone containing two terminal acetylene groups by aldol condensation of an appropriate aldehyde and a ketone, followed by cyclization of the resulting acyclic ketone by intramolecular oxidative coupling. ${ }^{3}$

Aldol condensation of the ketones 16^{3} and 18^{3} with the aldehyde 15^{3} in the presence of ethanolic sodium ethoxide in deoxygenated diethyl ether afforded the acyclic ketones 17 and 19, respectively. Aldol condensation of the homologated aldehyde $\mathbf{2 0}^{3}$ with the ketone $\mathbf{1 6}$ and with dienone $\mathbf{2 2}$ prepared

[13]-1 $m=n=1$
[15] - $2 m=1, n=2$
[17] $-3 m=n=2$
[19]- $4 m=2, n=3$
[21] $-5 m=n=3$
[23]- $6 m=3, n=4$
[25]-7m=n=4

[21]- $11 \mathrm{R}=\mathrm{H}, m=0, n=1$
[21] - $12 \mathrm{R}=\mathrm{Me}, m=0, n=1$
[23]- $13 \mathrm{R}=\mathrm{H}, m=0, n=2$
[25]-14R=H, $m=1, n=2$
from enal 20 and acetone afforded the acyclic ketones 21 and 23, respectively. Oxidative coupling of ketones 17,19 and 21 with anhydrous copper(II) acetate in pyridine-diethyl ether at $50^{\circ} \mathrm{C}^{6,8}$ afforded the dimethano-bridged annulenones 11, 12 and 13, respectively. Oxidative coupling of the ketone 23 required high-dilution conditions and afforded the monomeric dimethano-bridged tetradehydro[25]annulenone 14 in 0.8% yield, accompanied by formation of the dimeric product 24 in 1.1% yield. For the dimer 24 IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectral data as well as the elemental analysis were consistent with the structure, although the FAB MS spectrum did not give the $(\mathbf{M}+1)^{+}$peak.
The poor yields of the dimethano-bridged [23]-13 and [25]annulenone 14 from the acyclic ketones 21 and 23 respectively discouraged us from preparing the larger-membered annulenones.
Dissolution of the annulenones 11-14 in trifluoroacetic acid (TFA) or deuteriotrifluoroacetic acid gave the corresponding

¥

\%

Fig. $1500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of compound 11 at $26^{\circ} \mathrm{C}(\mathrm{a})$ in CDCl_{3} and (b) ; $\mathrm{n}^{\mathrm{CF}} \mathrm{CO}_{3} \mathrm{CO}_{2} \mathrm{D}$. Peaks marked \bullet are due to the minor isomer.

11b

11a
protonated or deuteronated carbonyl species $11^{\prime}-\mathbf{1 4}^{\prime}$: compound 11' was dark brown, 12' dark green, 13' dark blue-green and 14^{\prime} dark blue-violet. Quenching of compound 11^{\prime} with aq. sodium hydrogen carbonate resulted in regeneration of compound 11. However, compounds $\mathbf{1 2}^{\prime}-14^{\prime}$ changed irreversively upon quenching, and ketones 12-14 were not recovered (see below).
${ }^{1}$ H NMR spectra and geometrical determination
The ${ }^{1} \mathrm{H}$ NMR spectra of compounds $11,12,13$ and 14 in CDCl_{3} and in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$ are shown in Figs. 1, 2, 3 and 4, respectively. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 11 in CDCl_{3} at $26^{\circ} \mathrm{C}$ reveals that the compound exists as an equilibrium mixture of two isomers in the ratio 97:3 [Fig. 1(a)]. As for the major isomer the methylene protons appear as a pair of doublets, suggesting that the molecule is symmetric (C_{s} or C_{2}) and the flipping of the methano-bridges through the average plane of the macrocyclic ring is slow on the NMR time-scale but the relative disposition of the two methano bridges, syn or anti, is not determined from the data. The $\mathrm{CH}=\mathrm{CH}$ moieties gave a vicinal coupling constant of 15.7 Hz , indicating the (E) configuration. Therefore the candidates for the geometry are 11a and 11b.

The homonuclear chemical-shift correlation spectroscopy ($\mathrm{CH}-\mathrm{COSY}$) spectrum revealed that the $\mathrm{CH}=\mathrm{CH}$ protons of the major isomer affording the doublet signals at $\delta 7.73$ and 7.03 are
connected to the carbons resonating at $\delta_{\mathrm{C}} 130.7$ and 138.7, respectively. Since the carbon chemical shifts reflect the electron densities more directly than do the proton chemical shifts, the carbon signal at lower field is reasonably assigned to carbons located β to the carbonyl group, C^{B}. Therefore the proton signal at $\delta 7.03$ is assigned to H^{B}, and the one at $\delta 7.73$ to H^{A}. The H^{A} signal shows an intensity nuclear overhauser enhancement (NOE) upon irradiation of the low-field methylene proton H^{b} at $\delta 4.20$, which indicates that H^{A} should be close to H^{b}. These facts show that the two-dimensional structure 11a should be assigned to the major isomer. The H^{B} signal shows NOE upon irradiation of the doublet at $\delta 6.46$, which is thus assigned to H^{1}.

The relative disposition of the methano bridges is unknown but the syn orientation can be assigned to the major isomer 11a, provided that the major isomer in solution is the same as that in the crystalline state, as described below.

Although no clear information on the structure of the minor isomer is obtained because of its low population, it is most reasonable to assume that it is the isomer which differs in the relative disposition of the methano bridges from the major isomer, i.e. the anti-isomer 11c.

Interconversion between these isomers was slow on the NMR time-scale at $26^{\circ} \mathrm{C}$ as judged from the sharp NMR signals. Elevation of the temperature, however, caused broadening of the signals. When measured in $\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene, the signals due to the minor isomer began to broaden around $70^{\circ} \mathrm{C}$ and

Fig. $2400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound 12 at $26^{\circ} \mathrm{C}$ in CDCl_{3}. Peaks marked • are due to isomer 12a and those marked are due to isomer 12b.

Fig. $3500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of compound 13 (a) in CDCl_{3} at $-30^{\circ} \mathrm{C}$ and (b) in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$ at $26^{\circ} \mathrm{C}$. Peaks marked are due to the minor isomer. Peaks marked \times are due to impurities.
disappeared around $100^{\circ} \mathrm{C}$ because of the coalescence with the signals due to the major isomer, while the broadening of the major isomer signals occurred above $90^{\circ} \mathrm{C}$. At $115^{\circ} \mathrm{C}$ the methylene proton signals appeared as a pair of broad doublets. These observations indicate that the equilibrium between isomers 11 a and 11 c is attained at $26^{\circ} \mathrm{C}$ and that the interconversion takes place on the NMR time-scale at higher temperatures, although no quantitative estimation of the rate constants can be made.
Compound $\mathbf{1 2}$ also exists in CDCl_{3} as an equilibrium mixture of two isomers in the ratio $\sim 1: 1$ (Fig. 2). Decoupling, NOE and qualitative saturation-transfer experiments revealed the geometries as isomers 12a and 12b which differ only in the relative disposition of the methano bridges and are slowly interconverting on the NMR time-scale at $26^{\circ} \mathrm{C}$. The syn disposition of the methano bridges is tentatively assigned to isomer 12a showing the larger paratropicity, as discussed later. No quantitative studies on the interconversion barriers between the isomers could be made because of the instability of the compound in solution.

Compound 13 gave the methylene proton signals as four broad peaks at $26^{\circ} \mathrm{C}$, suggesting the occurrence of some rate processes. At $-30^{\circ} \mathrm{C}$ the spectrum gave two sets of sharp signals, indicating the presence of two isomers in the ratio

12a

12b

Fig. $4400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of compound 14 at $26^{\circ} \mathrm{C}(\mathrm{a})$ in CDCl_{3} and (b) in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$. Peaks marked \bullet are due to the minor isomer.

13b
$\sim 95: 5$, as shown in Fig. 3(a). Decoupling and NOE experiments at $-30^{\circ} \mathrm{C}$ revealed the geometry of the major isomer as being structure 13a, the syn disposition of the methano bridges being tentatively assumed. Only three doublets, at $\delta 1.70,3.24$ and 3.62 , presumably ascribed to the methylene protons, were identified for the minor isomer. Although no information on the structure of the minor isomer was obtained because of the significant overlap of the signals with those of the major isomer, the anti-isomer 13b may be most probable.

The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 14 at $26^{\circ} \mathrm{C}$ indicated that the compound exists as two isomers in the ratio $\sim 3: 2$, as is seen from Fig. 4(a). The methylene proton signal of the major isomer appeared as one broad singlet, while that of the minor isomer appeared as two pairs of sharp doublets. This indicates the following: the major isomer has a symmetric structure and the flipping of the methano bridges is fast on the NMR timescale, while the minor isomer has an unsymmetric structure and the flipping is slow. Analysis of the olefinic proton signals of the major isomer revealed that the $\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}$ moiety is (E, Z). This suggests the geometry $\mathbf{1 4 a}$ or $\mathbf{1 4 b}$, the former being

14c
more probable from inspection of molecular models. An unsymmetric structure such as 14 c may be tentatively assigned to the minor isomer. Here again the syn arrangement of the methano bridges may be assumed for both isomers.

X-Ray crystallographic analysis of compound 11

As compound 11 afforded good crystals suitable for X-ray crystallography, its structure determination was performed. The crystal contains two independent molecules of 11 in a unit cell [Fig. 5(a)], but their structures are quite similar and the perspective drawing of one of them is shown in Fig. 5(b). The crystal structure reveals that the compound adopts the conformation with C_{s} symmetry, in which the two methanobridges are on the same side of the macrocyclic ring, i.e. syn, and the two trans double bonds are connected to the carbonyl group in a s-cis fashion, as represented by structure 11a.

Tropic properties of compounds 11-14

The magnitude of the tropic properties of the annulenones may be judged by the chemical shifts of various protons in the molecules relative to those of the corresponding acyclic precursors chosen as the respective reference compounds.
The major isomer 11a of compound 11 showed the downfield shifts of the inner olefinic proton $\mathrm{H}^{\mathrm{A}}(0.93 \mathrm{ppm})$ and the methylene protons (0.38 ppm on the average) and the upfield
shifts of the outer olefinic proton $\mathrm{H}^{\mathrm{B}}(0.41 \mathrm{ppm})$ relative to the corresponding protons of the reference compound 17 (see Experimental section for detailed chemical-shift data). This clearly indicates that the isomer 11a shows significant paratropicity, as expected for the potential 20π-electron system which would arise from the polarization of the carbonyl group. As can be seen from Fig. 1(b), the paratropicity is significantly enhanced in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$ where the carbonyl of compound 11a is deuteronated to afford a 20π-electron cationic species $11 \mathbf{a}^{\prime}$; the inner protons showed large downfield shifts, while the outer protons showed slight downfield shifts because the intrinsic downfield shifts due to the electron-density effect of the cationic species outweighed the tropic effect.

On the other hand, the minor isomer 11c is almost atropic. even in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$, as seen from Fig. 1. The large difference in paratropicity between isomers 11a and 11c may be ascribed to the difference in planarity of the peripheral π-system; the synisomer shows better planarity and higher tropicity, as was observed in dimethano[14]annulene. ${ }^{9}$
Among the isomers of compound 12, 12a is clearly paratropic and $\mathbf{1 2 b}$ is atropic as judged from the chemical shifts in CDCl_{3}. This compound was quite unstable in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$ and no meaningful NMR data were obtained.

13a'

13b'

The ${ }^{1} \mathrm{H}$ NMR data of compound 13 at $-30^{\circ} \mathrm{C}$ indicated that the major isomer 13a is only slightly diatropic and the minor isomer 13b may be atropic; judgements were made solely from the methylene chemical shifts because the olefin-proton region of the reference compound 21 can not be fully analysed. Compound 13 is unstable in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$ and the ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of considerable amounts of decomposition products [Fig. 3(b)]. The coupling constants of the olefinic proton signals suggest the presence of a (Z) $\mathrm{CH}=\mathrm{CH}$ moiety, and the presence of two olefinic protons in the upfield region of $\delta 5.4-3.8$ suggests that these protons are inside the ring. These findings indicate that the cationic species has a different geometry from the major isomer of the neutral species found in CDCl_{3}, and that the geometry of the cation is either $13 \mathbf{a}^{\prime}$ or $\mathbf{1 3 b}^{\prime}$. Although differentiation between the two is difficult, structure 13a' is tentatively assigned. Considerably larger upfield shifts of the inner protons as well as of the methylene protons ($\delta 1.6-0.8$) suggest a large diatropicity for this cationic species. Isomerization of the double bond upon changing the solvent from CDCl_{3} to $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$ has been observed for the dimethyl- or trimethyl-tetradehydro-[15]-2, ${ }^{10}$ -[19]-annulenone 4^{11} and methano-bridged [19]annulenone $9 .{ }^{3}$

14c'
The major isomer 14 a of compound $\mathbf{1 4}$ is paratropic judging
(a)

Fig. 5 The unit-cell packing diagram (a) and the ORTEP drawing (b) of compound 11
from the appearance of the inner olefinic ($\delta 8.89$) and methylene ($\delta 3.32$) protons at lower field than the corresponding protons in the reference compound 23 ($\delta 7.39$ and 2.74 , respectively). The minor isomer 14 c is also paratropic though to a lesser extent than 14a. As is seen from Fig. 4(b), compound 14 is found to exist as a single species $14 \mathbf{c}^{\prime}$ in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$. The methylene proton signals shift downfield by $c a .0 .5 \mathrm{ppm}$ on the average upon changing the solvent from CDCl_{3} to $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$, suggesting a small increase in paratropicity.

If we compare the degree of paratropicity in the dimethano[21]annulenones 11a (and 12a) with the corresponding monomethano derivative 10 and the monocyclic one 5^{12} and of the dimethano[25]annulenone 14a with compound $7,{ }^{1 b}$ respectively, the monocyclic annulenones 5 and 7 show the largest paratropicity while the respective dimethano-bridged counterparts, 11a (12a) and 14a show the least paratropicity under both the neutral (in CDCl_{3}) and acidic conditions (in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$), judging from the chemical shifts of the inner and outer olefinic signals.

A similar comparison was also made for the diatropicity from the dimethano-bridged [23]annulenone 13 and its monocyclic counterpart $6,{ }^{1 b}$ revealing the larger diatropicity in monocycle 6 than in tricycle 13. Therefore the tropicity of the [21]-, [23]and [25]-annulenones decreases in the order: monocyclic $>$ monomethano-bridged $>$ dimethano-bridged. This suggests that the methano-bridging significantly perturbs the planarity of the monocyclic annulenones $1-7$, owing to the presence of the methano bridges.

Electronic spectra of compounds 11-14

The absorption spectra of compounds 11-14 in tetrahydrofuran (THF) and the spectra of compounds 11, 13 and 14 in TFA are illustrated in Figs. 6 and 7 respectively.

It is evident from Figs. 6 and 7 that all the bands of annulenones 11,13 and 14 show an appreciable bathochromic shift upon changing the solvent from THF to TFA. demonstrating the more extended conjugation of their π electron systems than those in THF. A similar trend was also observed for the annulenedione 24 (see Experimental section).

Fig. 6 shows that the spectra of compounds 11, 12 and 14 are

Fig. 6 Electronic absorption spectra of [21]-11 (----), [21]- 12 $(-\cdot--)$. [23]-13 (- $\cdot-\cdots-)$ and [25]annulenone $14(-)$ in THF

Fig. 7 Electronic absorption spectra of [21]-11 (- - -), [23]- 13 ($\cdots-\cdots-)$ and [25]annulenone $14(-)$ in TFA
similar in shape as expected, and their spectra exhibit some broadening of the absorption curves, as compared with the spectrum of compound 13, revealing that compounds 11, 12 and 14 are the $[4 n+1]$ annulenones, as has been observed in the monocyclic tetradehydroannulenone series 1-7.6.7

This behaviour is much more marked in Fig. 7 which shows the absorption spectra of compounds 11, 13 and 14 in TFA. The spectra of compounds 11 and 14 showed rather broad curves as compared with that of compound 13, demonstrating that compounds 11 and 14 are [$4 n$] π-electron systems. Also, the end absorptions of compounds 11 and 14 tailed to a longer wavelength than did that of compound 13, an effect recently shown for the spectra of [$4 n$]annulenes. ${ }^{13}$

As has been observed for the annulenes and dehydroannulenes, the occurrence of alternation between the main maxima of ($4 n-2$) and $4 n$ systems is known. ${ }^{14}$ However, it is not possible to use the main maxima of compounds 11-14 and 11'14^{\prime} for comparison with regard to the current discussion, since the conformations are very different among compounds 11-14.

Experimental

Mps were determined on a hot-stage apparatus and are uncorrected. IR spectra were taken with a JASCO-7300 spectrophotometer on samples as KBr discs; only significant maxima are described. Electronic (UV/VIS) spectra were measured in THF or TFA solution with a Shimadzu 2200A spectrophotometer. Mass spectra were recorded with a JEOL JMS-D 300 spectrometer operating at 75 eV using a direct-inlet system. Fast-atom bombardment mass spectra (FAB-MS) were obtained for samples in a m-nitrobenzyl alcohol matrix on a

JEOL JMS-AX 505W high-resolution double-focusing mass spectrometer equipped with a D 5000 data system. ${ }^{1} \mathrm{H}$ NMR spectra at ambient temperature were recorded for CDCl_{3} solutions, unless otherwise specified, with a JEOL GX-400 (400 MHz) or a Bruker AM-500 (500 MHz) spectrometer. Internal SiMe_{4} (TMS) was used as reference. J Values are given in Hz . ${ }^{13} \mathrm{C}$ NMR spectra were recorded for CDCl_{3} solutions, unless otherwise indicated, on the GX-400 or the AM-500 at 100.40 or 125.76 MHz , respectively, with internal TMS as reference.

Freshly deoxygenated diethyl ether and acetone were used to minimize oxidation of the compounds employed for aldol condensation and were prepared by passage through a short column of basic alumina (ICN, activity I), followed by flushing with argon, immediately before use. $0.36 \mathrm{~mol} \mathrm{dm}^{-3}$ Ethanolic sodium ethoxide was used for the aldol condensations and was prepared from sodium (250 mg) and dry ethanol ($30 \mathrm{~cm}^{3}$) immediately before use. Progress of all reactions was followed by TLC on Merck pre-coated silica gel. Alumina (Merck, activity II-III) and silica gel (Daiso gel 1001 W or Daiso gel 1002 W) were used for column chromatography. Compounds were pre-adsorbed from diethyl ether, benzene or dichloromethane solution onto the adsorbent before column chromatography. Preparative TLC (PLC) was carried out on $20 \times 20 \mathrm{~cm}$ alumina plates (Merck, 0.5 or 2 mm thick). Organic extracts were washed with saturated aq. sodium chloride and dried over anhydrous sodium sulfate prior to removal of solvent. Solvents were evaporated off under water-pump pressure. Ether refers to diethyl ether.

1,5-Bis-(6-ethynylcyclohepta-1,3,5-trienyl)penta-1,4-dien-3-one 17. Typical procedure for preparation of bisethynyl ketones

An ethanolic sodium ethoxide solution ($1.95 \mathrm{~cm}^{3}$) was added in small portions to a stirred solution of the ketone $\mathbf{1 6}^{\mathbf{3}}(315 \mathrm{mg}$, $1.71 \mathrm{mmol})$ and the aldehyde $15^{3}(450 \mathrm{mg} .3 .12 \mathrm{mmol})$ in deoxygenated ether $\left(20 \mathrm{~cm}^{3}\right)$ at $5-10^{\circ} \mathrm{C}$, and the solution was stirred for 2 h at $5-10^{\circ} \mathrm{C}$. Then the reaction was terminated by addition of $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}\left(2.0 \mathrm{~cm}^{3}\right)$. The mixture was poured onto water and extracted with benzene. The combined extracts were washed with aq. NaHCO_{3} and dried. The residue obtained after removal of the solvent was chromatographed on alumina ($3.2 \times 5.5 \mathrm{~cm}$). The initial fractions eluted with 20% ether in hexane afforded the unchanged aldehyde 15 (156 mg recovery). The later fractions eluted with hexane-ether ($3: 2$) afforded the ketone $17(412 \mathrm{mg}, 78 \%$) as orange needles, mp 99$102^{\circ} \mathrm{C}$ (decomp.) (from hexane-dichloromethane); $m / z 310$ $\left(\mathrm{M}^{+}, 61 \%\right)$ and 128 (100) ($\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}$ requires $\mathrm{M}, 310.3$); $\lambda_{\max }(\mathrm{THF}) / \mathrm{nm} 210\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{1} 19100\right), 243$ (37700) 295sh (13900) and 388 (21900); $v_{\text {max }} / \mathrm{cm}^{-1} 3246$ and 3219 $(\mathrm{C} \equiv \mathrm{CH}), 2083(\mathrm{C} \equiv \mathrm{C}), 1659(\mathrm{C}=\mathrm{O}), 1607$ and $1569(\mathrm{C}=\mathrm{C})$ and $975[(E)-\mathrm{HC}=\mathrm{CH}] ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 7.441\left(2 \mathrm{H}, \mathrm{d}, J 15.6, \mathrm{H}^{\mathrm{B}}\right)$, $6.800\left(2 \mathrm{H}, \mathrm{d}, J 15.6, \mathrm{H}^{\mathrm{A}}\right), 6.732\left(2 \mathrm{H}, \mathrm{dd}, J 11.0\right.$ and $\left.6.0, \mathrm{H}^{2}\right)$, $6.670\left(2 \mathrm{H}, \mathrm{dd}, J 10.9\right.$ and $\left.6.0, \mathrm{H}^{3}\right), 6.623\left(2 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{H}^{4}\right)$, $6.573\left(2 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{H}^{1}\right), 2.940(2 \mathrm{H}, \mathrm{s}, \mathrm{C} \equiv \mathrm{CH})$ and $2.753(4 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(125.76 \mathrm{MHz}) 188.96(\mathrm{q}, \mathrm{C}=\mathrm{O}), 143.58(\mathrm{t}), 132.80(\mathrm{t})$, $132.59(\mathrm{t}), 131.99(\mathrm{t}), 131.66(\mathrm{t}), 129.83(\mathrm{q}), 126.45(\mathrm{t}), 114.54$ (q), $85.45(\mathrm{q},-\mathrm{C} \equiv), 75.43(\mathrm{t}, \equiv \mathrm{CH})$ and 33.01 ($\mathrm{s}, \mathrm{CH}_{2}$) (Found: $\mathrm{C}, 89.3 ; \mathrm{H}, 6.0 . \mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}$ requires $\mathrm{C}, 89.0 ; \mathrm{H}, 5.85 \%$).

1,5-Bis-(6-ethynylcyclohepta-1,3,5-trienyl)-2-methylpenta-1,4-dien-3-one 19

Aldol condensation of the ketone $\mathbf{1 8}^{3}(234 \mathrm{mg}, 1.18 \mathrm{mmol})$ and the aldehyde $15^{3}(274 \mathrm{mg}, 1.90 \mathrm{mmol})$ followed by chromatography on alumina ($4.2 \times 6.7 \mathrm{~cm}$) with hexane-ether (7:3) as the eluent afforded the unchanged aldehyde 15 (100 mg recovery). The later fractions eluted with hexane-ether ($3: 2$) afforded the ketone 19 ($220 \mathrm{mg}, 58 \%$) as yellow cubes, $\mathrm{mp} 85-$ $87^{\circ} \mathrm{C}$ (decomp.) (from hexane-ether); $m / z 324\left(\mathrm{M}^{+}, 18 \%\right)$ and 115 (100) ($\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}$ requires $\mathrm{M}, 324.4$); $\lambda_{\text {max }}(\mathrm{THF}) / \mathrm{nm} 238$
($\varepsilon 30900$), 241 (31900) and 372.5 (15400); $\nu_{\max } / \mathrm{cm}^{-1} 3233$ $(\mathrm{C} \equiv \mathrm{CH}), 2084(\mathrm{C} \equiv \mathrm{C}), 1630(\mathrm{C}=\mathrm{O}), 1604,1593,1564(\mathrm{C}=\mathrm{C})$ and $975[(E)-\mathrm{HC}=\mathrm{CH}] ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.394\left(1 \mathrm{H}, \mathrm{d}, J 15.3, \mathrm{H}^{\mathrm{B}^{\prime}}\right)$, $7.138\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\mathrm{B}}\right), 6.935\left(1 \mathrm{H}, \mathrm{d}, J 15.3, \mathrm{H}^{\mathrm{A}^{\prime}}\right), 6.77-6.57(6 \mathrm{H}, \mathrm{m}$, 7 -membered ring H), 6.557 ($1 \mathrm{H}, \mathrm{d}, J 5.9,7$-membered ring H), $6.469(1 \mathrm{H}, \mathrm{d}, J 6.2,7$-membered ring H), $2.992(1 \mathrm{H}, \mathrm{s}, \mathrm{C} \equiv \mathrm{CH})$, 2.899 ($1 \mathrm{H}, \mathrm{s}, \mathrm{C} \equiv \mathrm{CH}$), $2.774\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right.$), $2.748\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ and $2.189(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{c}}(100.40 \mathrm{MHz}) 192.66(\mathrm{q}, \mathrm{C}=\mathrm{O}), 143.69$ (t), $139.10(\mathrm{t}), 139.03$ (q), $133.18(\mathrm{t}), 132.39(\mathrm{t}), 132.03(\mathrm{t}), 131.79$ $(\mathrm{t}), 131.75(\mathrm{t}), 131.65(\mathrm{t}), 130.84(\mathrm{t}), 130.39(\mathrm{t}), 129.99(\mathrm{q}), 129.87$ (q), 122.84 (t), 114.28 (q), $113.40(\mathrm{q}), 85.65(\mathrm{q},-\mathrm{C} \equiv), 85.60(\mathrm{q}$, $-\mathrm{C} \equiv$), 75.56 ($\mathrm{t}, \equiv \mathrm{CH}$), 75.36 ($\mathrm{t}, \equiv \mathrm{CH}$), $36.54\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 33.51(\mathrm{~s}$, CH_{2}) and 14.24 (p, CH_{3}) (Found: C, 88.8; H, 6.3. $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}$ requires $\mathrm{C}, 88.9 ; \mathrm{H}, 6.2 \%$).

1,7-Bis-(6-ethynylcyclohepta-1,3,5-trienyl)hepta-1,4,6-trien-3one 21

Aldol condensation of the aldehyde $\mathbf{2 0}^{\mathbf{3}}$ ($500 \mathrm{mg}, 2.94 \mathrm{mmol}$) and the ketone 16^{3} ($750 \mathrm{mg}, 4.07 \mathrm{mmol}$) followed by chromatography on alumina ($3.8 \times 5.0 \mathrm{~cm}$) with hexane-ether ($7: 3$) as the eluent afforded the ketone $21(415 \mathrm{mg}, 42 \%$) as yellow needles, mp $117-121^{\circ} \mathrm{C}$ (decomp.) (from hexanedichloromethane); $m / z 336\left(\mathrm{M}^{+}, 4 \%\right)$ and $57(100)\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}\right.$ requires M, 336.4); $\lambda_{\text {max }}(\mathrm{THF}) / \mathrm{nm} 244(\varepsilon 32900)$, 278sh (26 500) and $407(34000)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3292$ and $3219(\mathrm{C} \equiv \mathrm{CH})$, $2084(\mathrm{C} \equiv \mathrm{C})$, 1654 and $1640(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{C})$ and $996[(E)-\mathrm{HC}=\mathrm{CH}]$; $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 7.46-7.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\mathrm{B}}\right.$ and $\left.\mathrm{H}^{\mathrm{B}^{\mathrm{S}}}\right), 6.81-6.56(11 \mathrm{H}$, m), $6.394(1 \mathrm{H}, \mathrm{d}, J 6.2), 2.938(1 \mathrm{H}, \mathrm{s}, \mathrm{C} \equiv \mathrm{CH}), 2.903(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C} \equiv \mathrm{CH})$ and $2.742\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(125.76 \mathrm{MHz}) 188.75(\mathrm{q}$, $\mathrm{C}=\mathrm{O}$), 143.42 (t), 143.14 (t$), 142.20(\mathrm{t}), 132.82(\mathrm{t}), 132.77(\mathrm{t})$, $132.60(t), 131.96(t), 131.87(t), 131.69(t), 131.00(q), 130.86(t)$, $129.89(\mathrm{q}), 129.79(\mathrm{t}) .129 .63(\mathrm{t}), 128.46(\mathrm{t}), 126.39(\mathrm{t}), 114.56$ (q), 113.86 (q$), 85.55(\mathrm{q},-\mathrm{C} \equiv), 85.45(\mathrm{q},-\mathrm{C} \equiv), 75.42(\mathrm{t}, \equiv \mathrm{CH})$, $75.06(\mathrm{t}, \equiv \mathrm{CH}), 33.02\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$ and $32.78\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$ (Found: C, 89.0; $\mathrm{H}, 6.1 . \mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}$ requires $\mathrm{C}, 89.25 ; \mathrm{H}, 6.0 \%$).

6-(6-Ethynylcyclohepta-1,3,5-trienyl)hexa-3,5-dien-2-one 22

Aq. $\mathrm{NaOH}\left(1.25 \mathrm{~mol} \mathrm{dm}^{-3} ; 4.6 \mathrm{~cm}^{3}\right)$ was added in one portion to a stirred solution of the aldehyde $\mathbf{2 0}^{\mathbf{3}}(\mathbf{2 6 0} \mathrm{mg}, 1.53 \mathrm{mmol})$ in deoxygenated acetone $\left(20 \mathrm{~cm}^{3}\right)$ at room temperature under argon. The solution was stirred for a further 1 h at room temperature. The reaction was terminated by addition of 5% aq. acetic acid ($100 \mathrm{~cm}^{3}$). Then the mixture was poured onto water and extracted with benzene. The extracts were washed with aq. NaHCO_{3} and dried. The residue obtained after removal of the solvent was chromatographed on silica gel ($3.8 \times 6.0 \mathrm{~cm}$). The fractions eluted with 5% benzene in hexane afforded the ketone 22 ($213 \mathrm{mg}, 66 \%$) as yellow needles, $\mathrm{mp}<15^{\circ} \mathrm{C}$ (from hexanebenzene); $m /=210\left(\mathrm{M}^{+}, 73 \%\right)$ and $152(100)\left(\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}\right.$ requires M, 210.2); $\lambda_{\max }($ THF $) / \mathrm{nm} 228$ ($\varepsilon 10900$), 274sh (27500), 284 (33600) and $372(18600) ; v_{\text {max }} / \mathrm{cm}^{-1} 3285(\mathrm{C} \equiv \mathrm{CH}), 2085(\mathrm{C} \equiv \mathrm{C})$. $1661(\mathrm{C}=\mathrm{O}), 1592(\mathrm{C}=\mathrm{C})$ and $992[(E)-\mathrm{HC}=\mathrm{CH}] ; \delta_{\mathrm{H}}(500 \mathrm{MHz})$ $7.220\left(1 \mathrm{H}\right.$, ddd, $J 15.5,8.6$ and $\left.1.6, \mathrm{H}^{\mathrm{B}}\right), 6.75-6.57\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\mathrm{C}}\right.$, $\mathrm{H}^{\mathrm{D}}, \mathrm{H}^{2}, \mathrm{H}^{3}$, and H^{1} or $\left.\mathrm{H}^{4}\right), 6.377\left(1 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{H}^{4}\right.$ or $\left.\mathrm{H}^{1}\right)$, $6.268\left(1 \mathrm{H}, \mathrm{d}, J 15.4, \mathrm{H}^{\mathrm{A}}\right), 2.890(1 \mathrm{H}, \mathrm{s}, \mathrm{C} \equiv \mathrm{CH}), 2.724(2 \mathrm{H}, \mathrm{s}$. CH_{2}) and 2.293 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$); $\delta_{\mathrm{c}}(125.76 \mathrm{MHz}) 198.26(\mathrm{q}, \mathrm{C}=\mathrm{O})$, $143.35(t), 141.88(t), 132.67(t), 131.78(t), 130.90(t), 130.78(t)$, $129.68(\mathrm{q}), 128.32(\mathrm{t}), 128.06(\mathrm{t}), 113.89(\mathrm{q}), 85.43(\mathrm{q},-\mathrm{C} \equiv)$. $75.10(\mathrm{t}, \equiv \mathrm{CH}), 32.78\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$ and $27.43\left(\mathrm{p}, \mathrm{CH}_{3}\right)$ (Found: C. 85.8; $\mathrm{H}, 6.8 . \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}$ requires $\mathrm{C}, 85.7 ; \mathrm{H}, 6.7 \%$).

1,9-Bis-(6-ethynylcyclohepta-1,3,5-trienyl)nona-1,3,6,8-tetraen-5-one 23

Aldol condensation of the ketone 22 ($540 \mathrm{mg}, 2.57 \mathrm{mmol}$) and the aldehyde 20^{3} ($400 \mathrm{mg}, 2.35 \mathrm{mmol}$) followed by chromatography on alumina ($3.2 \times 4.0 \mathrm{~cm}$) with hexane-ether ($1: 4$) as the eluent afforded the ketone 23 ($508 \mathrm{mg}, 60 \%$) as red needles, mp 125-130 ${ }^{\circ} \mathrm{C}$ (decomp.) (from hexane-benzene); m / z
$363\left[(\mathrm{M}+1)^{+}, 34 \%\right]$ and 154 (100) (FAB-MS) $\left(\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}\right.$ requires M, 362.4); $\lambda_{\text {max }}(\mathrm{THF}) / \mathrm{nm} 260.5$ ($\varepsilon 15000$), 275sh (14200), 286sh (12600) and 418 (20 800); $v_{\text {max }} / \mathrm{cm}^{-1} 3286$ and $3216(\mathrm{C} \equiv \mathrm{CH}), 2081(\mathrm{C} \equiv \mathrm{C}), 1648$ and $1639(\mathrm{C}=\mathrm{O}), 1603(\mathrm{C}=\mathrm{C})$ and $995[(E)-\mathrm{HC}=\mathrm{CH}] ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 7.390\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\mathrm{B}}\right), 6.80-$ $6.58\left(10 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\mathrm{C}} \mathrm{H}^{\mathrm{D}}, \mathrm{H}^{2}, \mathrm{H}^{3}\right.$ and $\left.\mathrm{H}^{4}\right), 6.556(2 \mathrm{H}, \mathrm{d}, J 15.2$, $\left.\mathrm{H}^{\mathrm{A}}\right) .6 .388\left(2 \mathrm{H}, \mathrm{d}, J 6.2 . \mathrm{H}^{1}\right), 2.901(2 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH})$ and $2.740(4$ $\mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}(125.76 \mathrm{MHz}) 188.67(\mathrm{q}, \mathrm{C}=\mathrm{O}), 142.94(\mathrm{t}), 142.09$ $(\mathrm{t}), 132.76(\mathrm{t}), 131.87(\mathrm{t}), 131.02(\mathrm{q}), 130.83(\mathrm{t}), 129.73(\mathrm{t}), 129.51$ (t). 128.51 (t), $113.85(\mathrm{q}), 85.54(\mathrm{q},-\mathrm{C} \equiv), 75.04(\mathrm{t}, \equiv \mathrm{CH})$ and 32.79 (s. CH_{2}) (Found: C. 89.6: H, 6.3. $\mathrm{C}_{2}, \mathrm{H}_{22} \mathrm{O}$ requires C , 89.5; H, 6.1\%).

7,8,9,10-Tetradehydro-1,6: 11,16-dimethano[21] annulen-19-one 11. Typical procedure of the intramolecular oxidative coupling of diethynyl ketones
A solution of the ketone $\mathbf{1 7}(330 \mathrm{mg}, 1.06 \mathrm{mmol})$ in pyridineether ($3: 1 ; 64 \mathrm{~cm}^{3}$) was added dropwise during 2 h to a stirred solution of anhydrous copper(11) acetate (1.70 g) in pyridineether ($3: 1 ; 60 \mathrm{~cm}^{3}$) at $50^{\circ} \mathrm{C}$. After being stirred for a further 30 min at $50^{\circ} \mathrm{C}$, the solution was cooled, poured onto $1 \mathrm{~mol} \mathrm{dm}{ }^{3}$ $\mathrm{HCl}\left(500 \mathrm{~cm}^{3}\right)$ and extracted with benzene. The combined extracts were washed successively with $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ and aq. NaHCO_{3} and dried. The residue obtained after removal of the solvent was chromatographed on alumina ($3.2 \times 7.0 \mathrm{~cm}$). The fractions eluted with hexane-ether ($2: 3$) afforded compound 11 ($214 \mathrm{mg}, 66 \%$) as red needles, $\mathrm{mp} 185-187^{\circ} \mathrm{C}$ (decomp.) (from hexane-dichloromethane); $m /=308\left(\mathrm{M}^{+}, 100 \%\right)\left(\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{O}\right.$ requires M, 308.3); $\lambda_{\text {max }}($ THF $) / \mathrm{nm} \quad 218$ ($\varepsilon 37000$), 235sh (30500), 292sh (22 700), 328 (50200) and 338sh (49 300), and see Fig. 6; $\lambda_{\text {max }}($ TFA $) / \mathrm{nm} 267 \mathrm{sh}(\varepsilon 2500)$, 287 (4800), 306 (10 300), 333sh (12400), 360sh (23900), 380 (29 700), 462sh (13 300), 499 (15400), 752 (2600), 879 (2600) and 892 (2500), and see Fig. 7; $v_{\text {max }} / \mathrm{cm}^{-1} 2166(\mathrm{C}=\mathrm{C}), 1664(\mathrm{C}=\mathrm{O}), 1598(\mathrm{C}=\mathrm{C})$ and $976[(E)-$ $\mathrm{HC}=\mathrm{CH}]$: NMR data showed the presence of two isomers in the ratio 97:3. The major isomer 11a: $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 7.733(2 \mathrm{H}, \mathrm{d}, J$ 15.7. $\left.\mathrm{H}^{\mathrm{A}}\right), 7.028\left(2 \mathrm{H}, \mathrm{d}, J 15.7, \mathrm{H}^{\mathrm{B}}\right), 6.689(2 \mathrm{H}, \mathrm{dd}, J 11.1$ and $\left.5.9, \mathrm{H}^{2}\right), 6.610\left(2 \mathrm{H}, \mathrm{dd}, J 11.1\right.$ and $\left.5.9, \mathrm{H}^{3}\right), 6.463(2 \mathrm{H}, \mathrm{d}, J 5.9$, $\left.\mathrm{H}^{1}\right), 6.370\left(2 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{H}^{4}\right), 4.200\left(2 \mathrm{H} . \mathrm{d}, J 12.4, \mathrm{H}^{\mathrm{b}}\right)$ and $2.049\left(2 \mathrm{H}, \mathrm{d}, J 12.5, \mathrm{H}^{\mathrm{a}}\right)$, and see Fig. 1(a); $\delta_{\mathrm{C}}(125.76 \mathrm{MHz})$ 188.07 (q, C=O), 138.71 (t), 132.31 (t), 131.41 (t), 130.72 (t), 130.56 (t), 129.30 (q), 129.12 (t), 113.33 (q), $86.58(\mathrm{q},-\mathrm{C} \equiv)$, 73.58 (q, $-\mathrm{C} \equiv$) and $35.32\left(\mathrm{~s}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}: \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right)$ $9.532\left(2 \mathrm{H}, \mathrm{d}, J 15.5, \mathrm{H}^{\mathrm{A}}\right), 7.271\left(2 \mathrm{H}, \mathrm{d}, J 15.5, \mathrm{H}^{\mathrm{B}}\right), 6.679(2 \mathrm{H}$, dd, $J 11.2$ and $\left.6.0, \mathrm{H}^{2}\right), 6.679\left(2 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{H}^{4}\right), 6.606(2 \mathrm{H}, \mathrm{dd}$. $J 11.2$ and $\left.6.0 . \mathrm{H}^{3}\right), 6.279\left(2 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{H}^{1}\right) .5 .344(2 \mathrm{H}, \mathrm{d}, J$ 13.0, H^{b}) and $3.093\left(2 \mathrm{H}, \mathrm{d}, J 13.0 \mathrm{H}^{\mathrm{a}}\right)$, and see Fig. 1(b); $\delta_{\mathrm{C}}\left(125.76 \mathrm{MHz} ; \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right) 191.90(\mathrm{q}, \mathrm{C}=\mathrm{O}), 151.93$ (t), 141.26 (t), 138.91 (t), 134.38 (t), 133.68 (q), 131.63 (t$), 128.04(\mathrm{t}), 119.47$ (q). $86.72(\mathrm{q},-\mathrm{C} \equiv)$. $77.47(\mathrm{q},-\mathrm{C} \equiv)$ and $38.21\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$.

The minor isomer 11c: $\delta_{\mathrm{H}} 7.141\left(2 \mathrm{H}, \mathrm{d}, J 15.9, \mathrm{H}^{\mathrm{A}}\right.$ or H^{B}), $6.970\left(2 \mathrm{H}, \mathrm{d}, J 15.9, \mathrm{H}^{\mathrm{B}}\right.$ or $\left.\mathrm{H}^{\mathrm{A}}\right) 6.832(2 \mathrm{H}, \mathrm{dd}, J 11.3$ and 5.8 , H^{3} or H^{2}), $6.775\left(2 \mathrm{H}, \mathrm{dd}, J 11.3\right.$ and $5.8, \mathrm{H}^{2}$ or $\left.\mathrm{H}^{3}\right), 6.567(2 \mathrm{H}$, $\mathrm{d}, J 5.8, \mathrm{H}^{4}$ or H^{1}), $6.534\left(2 \mathrm{H}, \mathrm{d}, J 5.8 . \mathrm{H}^{1}\right.$ or $\left.\mathrm{H}^{4}\right), 3.549(2 \mathrm{H}, \mathrm{d}$, $\left.J 12.8, \mathrm{H}^{\mathrm{b}}\right)$ and $1.769\left(2 \mathrm{H}, \mathrm{d}, J 12.8, \mathrm{H}^{\mathrm{a}}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz} ;$ $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$) signals due to $\mathrm{H}^{1}-\mathrm{H}^{4}$ were not clearly identified. δ_{H} $7.71\left(2 \mathrm{H}, \mathrm{d}, J 16, \mathrm{H}^{\mathrm{A}}\right.$ or $\left.\mathrm{H}^{\mathrm{B}}\right), 7.38\left(2 \mathrm{H}, \mathrm{d}, J 16, \mathrm{H}^{\mathrm{B}}\right.$ or $\left.\mathrm{H}^{\mathrm{A}}\right), 3.88$ ($2 \mathrm{H}, \mathrm{d}, J 13, \mathrm{H}^{\mathrm{b}}$) and $1.90\left(2 \mathrm{H}, \mathrm{d}, J 13, \mathrm{H}^{\mathrm{a}}\right.$) (Found: C, 89.4; H, 5.4. $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{O}$ requires $\mathrm{C}, 89.6: \mathrm{H}, 5.2 \%$).

7,8,9,10-Tetradehydro-18-methyl-1,6: 11,16- dimethano[21]-annulen-19-one 12

Oxidative coupling of the ketone 19 afforded compound 12 in 43% yield as red cubes, $\mathrm{mp} 174-177^{\circ} \mathrm{C}$ (decomp.) (from hexane-ether); $m / z 322\left(\mathrm{M}^{+}, 100 \%\right)\left(\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}\right.$ requires M , 322.4); $\lambda_{\text {max }}($ THF $) / \mathrm{nm} 236.5$ ($\varepsilon 31300$), 251.5 (31 700), 267 (34000), $289(35200)$ and 318 (36400), and see Fig. 6; $i_{\text {max }}($ TFA $) / \mathrm{nm} 255.5$ ($\varepsilon 19500$), $258.0(18200)$ and 283.5
(14900); $v_{\text {max }} / \mathrm{cm}^{-1} 2163(\mathrm{C}=\mathrm{C}), 1650(\mathrm{C}=\mathrm{O}), 1582(\mathrm{C}=\mathrm{C})$ and $968[(E)-\mathrm{HC}=\mathrm{CH}]$; The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 12 in CDCl_{3} showed that it consists of two isomers in the ratio $\sim 1: 1$. The isomer 12a: $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.946\left(1 \mathrm{H}, \mathrm{d}, J 15.2, \mathrm{H}^{\mathrm{A}^{\top}}\right), 7.741$ ($1 \mathrm{H}, \mathrm{s} . \mathrm{H}^{\mathrm{B}}$), $7.183\left(1 \mathrm{H}, \mathrm{d}, J 15.5, \mathrm{H}^{\mathrm{B}^{\prime}}\right), 6.906-6.318(8 \mathrm{H}, \mathrm{m})$, $4.110\left(1 \mathrm{H}, \mathrm{d}, J 12.9, \mathrm{H}^{\mathrm{d}}\right), 3.972\left(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{H}^{\mathrm{b}}\right), 2.349(1 \mathrm{H}$, d, $\left.J 12.9, \mathrm{H}^{\mathrm{c}}\right), 2.050(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $2.032\left(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{H}^{\mathrm{a}}\right)$.

The isomer 12b: $\delta_{\mathrm{H}} 7.424\left(1 \mathrm{H}, \mathrm{d}, J 15.2, \mathrm{H}^{\mathrm{A}^{\prime}}\right), 7.087(1 \mathrm{H}, \mathrm{d}, J$ $\left.15.5, \mathrm{H}^{\mathrm{B}}\right) .6 .926\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\mathrm{B}}\right), 6.906-6.318(8 \mathrm{H}, \mathrm{m}), 3.554(1 \mathrm{H}$, d, $\left.J 12.9 . \mathrm{H}^{\mathrm{d}}\right), 3.417\left(1 \mathrm{H}, \mathrm{d}, J 11.7, \mathrm{H}^{\mathrm{b}}\right), 2.153(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $1.943\left(1 \mathrm{H} . \mathrm{d} . J 12.9, \mathrm{H}^{\mathrm{c}}\right)$ and $1.654\left(1 \mathrm{H}, \mathrm{d}, J 11.7, \mathrm{H}^{\mathrm{a}}\right)$, and see Fig. 2: $\delta_{\mathrm{C}}(100.40 \mathrm{MHz}) 192.74(\mathrm{q}, \mathrm{C}=\mathrm{O}), 191.24(\mathrm{q}, \mathrm{C}=\mathrm{O})$, 143.63 (t). $142.39(t), 139.76(t), 139.03(t), 138.69(q), 138.49$ (q). 132.46 (t), 132.31 (t), 132.20 (t$), 132.17$ (t), 131.92 (q), $131.81(\mathrm{t}), 131.76(\mathrm{t}), 131.56(\mathrm{t}), 130.23(\mathrm{q}), 130.03(\mathrm{t}), 129.85(\mathrm{t})$, 129.82 (t). 129.45 (t), 129.08 (t), 128.66 (q), 126.62 (q). 126.26 $(\mathrm{t}), 125.88(\mathrm{t}), 125.34(\mathrm{t}), 125.17(\mathrm{t}), 123.52(\mathrm{t}), 121.77(\mathrm{t}), 113.59$ (q). 113.11 (q), 109.93 (q), 109.47 (q), 90.56 (q), 90.15 (q), 89.51 (q). $88.98(\mathrm{q}), 76.45(\mathrm{q}), 76.14(\mathrm{q}), 73.11(\mathrm{q}), 72.80(\mathrm{q}), 43.08(\mathrm{~s}$, CH_{2}), 42.99 ($\mathrm{s}, \mathrm{CH}_{2}$), 35.98 ($\mathrm{s}, \mathrm{CH}_{2}$), 35.82 ($\mathrm{s}, \mathrm{CH}_{2}$), 13.36 (p, $\left.\mathrm{CH}_{3}\right)$ and $13.30\left(\mathrm{p}, \mathrm{CH}_{3}\right)$. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 12 in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$ could not be analysed owing to overlap of the signals with those of the decomposition products (Found: C. $89.2 ; \mathrm{H} .5 .8 . \mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}$ requires C, $89.4 ; \mathrm{H}, 5.6 \%$).

7,8,9,10-Tetradehydro-1,6:11,16-dimethano[23] annulen-19-one

 13Oxidative coupling of the ketone 21 gave a dark red liquid, which was chromatographed on alumina ($3.8 \times 4.0 \mathrm{~cm}$). The fractions eluted with benzene were collected and concentrated. The residue was further purified by PLC (dichloromethane as developer). The fast moving, third band afforded compound 13 ($34 \mathrm{mg}, 8.3 \%$) as red needles, mp $130-132{ }^{\circ} \mathrm{C}$ (decomp.) (from hexane-benzene); $m /=334\left(\mathrm{M}^{+}, 75 \%\right)$ and $289(100)\left(\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{O}\right.$ requires M. 334.3); $\lambda_{\text {max }}($ THF $) / \mathrm{nm} 231.5$ ($\varepsilon 29200$), 281.5 (32400). 295sh (30600), 357 (40000) and 439sh (6800), and see Fig. 6; $i_{\text {max }}($ TFA $) / \mathrm{nm} 317.5(\varepsilon 28000), 412(35700), 650$ (22000). 868 (180) and 894.5 (620), and see Fig. $7 ; v_{\text {max }} / \mathrm{cm}^{-1}$ $2161(\mathrm{C} \equiv \mathrm{C}) .1665$ and 1646 ($\mathrm{C}=0$), 1597 (C=C), 993 [(E)$\mathrm{HC}=\mathrm{CH}]$ and $697[(Z)-\mathrm{H}=\mathrm{CH}]$; The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 13 at $-30^{\circ} \mathrm{C}$ in CDCl_{3} showed the presence of two isomers in $\sim 95: 5$ ratio. The major isomer 13a: $\delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.-30^{\circ} \mathrm{C}\right) 7.115\left(1 \mathrm{H}, \mathrm{d}, J 16.1, \mathrm{H}^{\mathrm{B}}\right), 7.108(1 \mathrm{H}, \mathrm{dd}, J 14.9$ and 11.0. $\mathrm{H}^{\mathrm{B}^{\prime}}$). $6.951\left(1 \mathrm{H}, \mathrm{dd}, J 11.0\right.$ and $\left.6.2, \mathrm{H}^{2}\right), 6.942(1 \mathrm{H}, \mathrm{dd}, J$ ~ 11 and ~ 6.7-membered ring H), 6.849 ($1 \mathrm{H}, \mathrm{dd}, J 11.0$ and 6.2. 7-membered ring H), 6.81-6.76 ($3 \mathrm{H}, \mathrm{m}, 7$-membered ring H), 6.716(1 H. d. J6.0, H ${ }^{1}$), $6.684\left(1 \mathrm{H}, \mathrm{d}, J 15.6, \mathrm{H}^{\mathrm{D}}\right), 6.482(1$ $\mathrm{H}, \mathrm{d}, J 6.1, \mathrm{H}^{8}, \mathrm{H}^{4}$ or H^{5}), 6.413 (1 H , dd, $J 15.6$ and $11.1, \mathrm{H}^{\mathrm{c}^{\mathrm{c}}}$), $6.375\left(1 \mathrm{H} . \mathrm{d} . J 14.9, \mathrm{H}^{\mathrm{A}^{\prime}}\right) .6 .309\left(1 \mathrm{H}, \mathrm{d}, J 16.1, \mathrm{H}^{\mathrm{A}}\right), 3.354(1 \mathrm{H}$, $\left.J 12.6, \mathrm{H}^{\mathrm{d}}\right) .3 .204\left(1 \mathrm{H}, \mathrm{d}, J 12.5, \mathrm{H}^{\mathrm{b}}\right), 1.400\left(1 \mathrm{H}, \mathrm{d}, J 12.7, \mathrm{H}^{\mathrm{a}}\right)$ and $1.274\left(1 \mathrm{H}, \mathrm{d}, J 12.6, \mathrm{H}^{\mathrm{c}}\right)$, and see Fig. 3(a); $\delta_{\mathrm{C}}(125.76 \mathrm{MHz}$; $-30^{\circ} \mathrm{C}$) 189.87 (q, C=O), 141.38 (t), 138.40 (t). 137.40 (t), $134.60(\mathrm{t})$. $133.64(\mathrm{t}), 133.27(\mathrm{t}), 133.08(\mathrm{t}), 132.70(\mathrm{t}), 132.40(\mathrm{t})$, $131.40(\mathrm{t}), 130.15(\mathrm{t}), 129.76(\mathrm{t}), 128.49(\mathrm{t}), 127.95(\mathrm{q}), 127.45(\mathrm{t})$, $126.40(\mathrm{q}) .110 .43(\mathrm{q}), 109.71(\mathrm{q}), 84.48(\mathrm{q},-\mathrm{C} \equiv), 83.22(\mathrm{q},-\mathrm{C} \equiv)$, 71.69 (q. $-\mathrm{C} \equiv$). 71.31 ($\mathrm{q},-\mathrm{C} \equiv$), $33.50\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$) and 31.84 (s , CH_{2}).

The species 13a': $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right) 9.307(1 \mathrm{H}, \mathrm{d}, J$ $\left.14.4, \mathrm{H}^{\mathrm{B}}\right), 7.944\left(1 \mathrm{H}, \mathrm{d}, J 11.4, \mathrm{H}^{\mathrm{A}}\right), 7.753\left(1 \mathrm{H}, \mathrm{d}, J 14.3, \mathrm{H}^{\mathrm{D}^{\prime}}\right)$, $7.78-7.36(8 \mathrm{H} . \mathrm{m}, 7$-membered ring H), $7.431(1 \mathrm{H}, \mathrm{t}, J 12.2$, $\left.\mathrm{H}^{\mathrm{B}^{\mathrm{B}}}\right), 5.313\left(1 \mathrm{H} . \mathrm{t}, J 13.3, \mathrm{H}^{\mathrm{C}^{\prime}}\right), 3.887\left(1 \mathrm{H}, \mathrm{d}, J 14.4, \mathrm{H}^{\mathrm{A}}\right), 1.611$ $\left(1 \mathrm{H}, \mathrm{d}, J 12 . \mathrm{H}^{\mathrm{d}}\right), 1.299\left(1 \mathrm{H}, \mathrm{d}, J 12, \mathrm{H}^{\mathrm{b}}\right), 0.914(1 \mathrm{H}, \mathrm{d}, J 12$, $\left.\mathrm{H}^{\mathrm{a}}\right)$ and $0.776\left(1 \mathrm{H}, \mathrm{d}, J 12, \mathrm{H}^{\mathrm{c}}\right)$, and see Fig. 3(b); $\delta_{\mathrm{C}}(125.76$ $\mathrm{MHz}: \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$) 185.46 ($\mathrm{q}, \mathrm{C}=0$), 161.16 (t$), 154.26$ (t), 149.94 (t), $143.85(\mathrm{t}), 143.46(\mathrm{t}), 139.01(\mathrm{t}), 137.11(\mathrm{t}), 135.72(\mathrm{t}), 133.98$ (q). 133.79 (t), 133.45 (t), 132.51 (t), 130.99 (t), 129.98 ($($), 128.02 (q). 116.53 (q). 115.82 (q), 113.97 (t), 93.67 (q, -C \equiv), 92.98 (q , $-\mathrm{C} \equiv$), $81.10(\mathrm{q},-\mathrm{C} \equiv), 78.20(\mathrm{q},-\mathrm{C} \equiv), 34.92\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$ and $34.75(\mathrm{~s}$,
CH_{2}) (Found: C, 89.5; H, 5.5. $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{O}$ requires $\mathrm{C}, 89.8 ; \mathrm{H}$, 5.4%).

7,8,9,10-Tetradehydro-1,6:11,16-dimethano [25] annulen-21-one 14 and $7,8,9,10,32,33,34,35$-octadehydro-21,46-dihydro-1,6: 11,16:26,31:36,41-tetramethano[50] annulene-21,46-dione 24
This reaction was performed using a high-dilution apparatus. A solution of the ketone $23(1.44 \mathrm{~g}, 3.98 \mathrm{mmol})$ in a mixture of pyridine ($140 \mathrm{~cm}^{3}$) and ether ($48 \mathrm{~cm}^{3}$) was added dropwise during 6 h to a refluxing, stirred solution of copper(II) acetate monohydrate (14.6 g) in a mixture of pyridine ($310 \mathrm{~cm}^{3}$) and ether $\left(278 \mathrm{~cm}^{3}\right)$ at $60^{\circ} \mathrm{C}$. After being refluxed and stirred for a further 1.5 h at $60^{\circ} \mathrm{C}$, the mixture was worked up as for the isolation of compound $\mathbf{1 1}$. The product was chromatographed on alumina ($3.2 \times 6.5 \mathrm{~cm}$). The initial fractions eluted with benzene afforded compound 14 ($12 \mathrm{mg}, 0.8 \%$) as orange needles, mp 180-184 ${ }^{\circ} \mathrm{C}$ (decomp.) (from hexane-dichloromethane); $m=360\left(\mathrm{M}^{+}, 90 \%\right)$ and $119(100)\left(\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{O}\right.$ requires M . 360.4); $\lambda_{\max }(\mathrm{THF}) / \mathrm{nm} 259(\varepsilon 38600)$, $282(37000), 292(37900)$, 337sh (37800), $350(40000)$, 372sh (26400) and 416sh (6700). and see Fig. 6 ; $\lambda_{\text {max }}$ (TFA)/nm 440sh ($\varepsilon 23000$). 495 (31 000) and 755 (12600), and see Fig. 7; $v_{\text {max }} / \mathrm{cm}^{-1} 2183(\mathrm{C} \equiv \mathrm{C}), 1647(\mathrm{C}=\mathrm{O})$, $1588(\mathrm{C}=\mathrm{C})$, 989 and 983 [$(E)-\mathrm{HC=}=\mathrm{CH}]$ (Found: C, 89.4; H, 5.7. $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{O}$ requires $\mathrm{C}, 90.0 ; \mathrm{H}, 5.6 \%$). Attempts to improve the elemental analysis failed. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 14 in CDCl_{3} showed that it consisted of two isomers in $\sim 3: 2$ ratio. The major isomer 14a: $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 8.891(2 \mathrm{H}$, dd, $J 15.5$ and 11.4, $\left.\mathrm{H}^{\mathrm{B}}\right), 6.60-6.45\left(6 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{3}\right.$ and H^{1} or $\left.\mathrm{H}^{4}\right)$, $6.430\left(2 \mathrm{H}, \mathrm{d}, J 15.5, \mathrm{H}^{\mathrm{A}}\right), 6.388\left(2 \mathrm{H}, \mathrm{t}, J 11.1 . \mathrm{H}^{\mathrm{C}}\right), 6.213(2 \mathrm{H}$, $\mathrm{d}, J 6.1, \mathrm{H}^{4}$ or H^{1}), $5.918\left(2 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{H}^{\mathrm{D}}\right)$ and $3.319(4 \mathrm{H}, \mathrm{s}$, CH_{2}).

The minor isomer 14c: $\delta_{\mathbf{H}} 7.466(1 \mathrm{H}, \mathrm{dd}, J 14.7$ and 11.2), 7.219 ($1 \mathrm{H}, \mathrm{dd}, J 14.6$ and 11.6), 7.156 ($1 \mathrm{H}, \mathrm{dd}, J 14.6$ and 11.0), 7.104 ($1 \mathrm{H}, \mathrm{d}, J 15.0$), 3.797 ($1 \mathrm{H}, \mathrm{d}, J 12.6$), $3.550(1 \mathrm{H}, \mathrm{d}, J$ $13.6), 2.505(1 \mathrm{H}, \mathrm{d}, J 13.6)$ and $1.824(1 \mathrm{H}, \mathrm{d}, J 12.6)$. The other signals are obscured by overlap with the major isomer signals; and see Fig. 4(a).

The species $14 \mathrm{c}^{\prime}: \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right) 8.743(1 \mathrm{H}, \mathrm{dd}, J$ 14.1 and $\left.12.8, \mathrm{H}^{\mathrm{B}^{\mathrm{C}}}\right), 8.650\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.12.2, \mathrm{H}^{\mathrm{C}}\right), 8.496(1$ $\left.\mathrm{H}, \mathrm{d}, J 14.1 . \mathrm{H}^{\mathrm{A}}\right), 8.045\left(1 \mathrm{H}, \mathrm{dd}, J 13.7\right.$ and $\left.12.0, \mathrm{H}^{\mathrm{B}}\right) .7 .096(1$ $\left.\mathrm{H}, \mathrm{t}, J 12.0, \mathrm{H}^{\mathrm{C}^{\prime}}\right), 7.062\left(1 \mathrm{H}, \mathrm{d}, J 15.0, \mathrm{H}^{\mathrm{D}}\right), 6.853(1 \mathrm{H}, \mathrm{d}, J 14.5$, $\left.\mathrm{H}^{\mathrm{A}^{\prime}}\right), 6.85-6.45(8 \mathrm{H}, \mathrm{m}, 7$-membered ring H$), 6.056(1 \mathrm{H}, \mathrm{d}, J$ $\left.11.1, \mathrm{H}^{\mathrm{D}}\right), 4.791\left(1 \mathrm{H}, \mathrm{d}, J 12.8, \mathrm{H}^{\mathrm{b}}\right), 4.508\left(1 \mathrm{H} . \mathrm{d} . J 14.1, \mathrm{H}^{\mathrm{d}}\right)$, $3.402\left(1 \mathrm{H}, \mathrm{d}, J 14.1, \mathrm{H}^{\mathrm{c}}\right)$ and $2.484\left(1 \mathrm{H}, \mathrm{d}, J 12.8, \mathrm{H}^{\mathrm{a}}\right)$, and see Fig. 4(b); $\delta_{\mathrm{c}}\left(100.40 \mathrm{MHz} ; \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right) 188.60(\mathrm{q} . \mathrm{C}=0$), 163.00 (q), 161.25 (q), $159.75(\mathrm{q}), 158.71(\mathrm{q}), 143.40(\mathrm{t}), 139.59(\mathrm{t})$, $138.59(t), 138.39(t), 137.19(t), 134.95(t), 134.62(t), 134.31(t)$, $133.34(\mathrm{t}), 132.66(\mathrm{t}), 132.44(\mathrm{t}), 128.45(\mathrm{t}), 123.03(\mathrm{t}), 121.56(\mathrm{t})$, $119.99(\mathrm{t}), 118.83(\mathrm{t}), 87.39(\mathrm{q},-\mathrm{C} \equiv), 87.26(\mathrm{q},-\mathrm{C} \equiv), 76.42(\mathrm{q}$, $-\mathrm{C} \equiv$), $74.76(\mathrm{q},-\mathrm{C} \equiv), 39.22\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$ and $36.30\left(\mathrm{~s} . \mathrm{CH}_{2}\right)$.

The later fractions eluted with benzene-dichloromethane ($7: 3$) afforded the dimeric products of compound 23 as a red solid. This solid was subjected to PLC (dichloromethane as developer). The fast moving, second band afforded the geometrical isomer of compound $24(9 \mathrm{mg}, 0.6 \%)$ as red microcrystals, mp $149-152^{\circ} \mathrm{C}$ (decomp.) (from hexane-benzene); $m / z 723\left[(\mathrm{M}+3)^{+}, 2 \%\right]$ and $460(15 \%)$ (FAB-MS) $\left(\mathrm{C}_{54} \mathrm{H}_{40} \mathrm{O}_{2}\right.$ requires $\mathrm{M}, 720.4$); $\lambda_{\text {max }}(\mathrm{THF}) / \mathrm{nm} 253$ ($\varepsilon 47300$), 284sh (41 300) and 399 (38 100); $v_{\text {max }} / \mathrm{cm}^{-1} 2174$ (C $\equiv \mathrm{C}$), 1639 $(\mathrm{C}=\mathrm{O}), 1601(\mathrm{C}=\mathrm{C}), 997[(E)-\mathrm{HC}=\mathrm{CH}]$ and $742[(Z)-\mathrm{HC}=\mathrm{CH}]$. Analytical and NMR spectral data could not be obtained because of a shortage of material.

The fast moving, third band afforded compound 24 (29 mg , 1.1%) as orange microcrystals, mp $170-178^{\circ} \mathrm{C}$ (decomp.) (from hexane-benzene); $m / z 138$ (100), 154 (95), 307 (40) and $460(5 \%$) (FAB-MS) ($\mathrm{C}_{54} \mathrm{H}_{40} \mathrm{O}_{2}$ requires $\mathrm{M}, 720.4$); $\lambda_{\text {max }}(\mathrm{THF}) / \mathrm{nm} 262.5$ ($\varepsilon 40100$), $307 \mathrm{sh}(34000), 361.5(32800)$ and 406 (34900); $i_{\text {max }}($ TFA $) / \mathrm{nm} 259(\varepsilon 41300), 334(26000), 387$ (23 300), 462

Table 1 Crystal data of compound 11 and parameters for data collection, structure determination and refinement

Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{O}$
Formula weight	308.38
Crystal dimension (mm)	$0.1,0.15,0.95$
Crystal system	triclinic
Space group	$P \overline{1}(\# 2)$
$a(\AA)$	$13.160(3)$
$b(\AA)$	$15.942(3)$
$c(\AA)$	$7.918(2)$
$x\left({ }^{\circ}\right)$	$97.41(2)$
$\beta\left({ }^{\circ}\right)$	$92.39(2)$
$\gamma\left({ }^{\circ}\right)$	$93.50(2)$
$V\left(\AA^{3}\right)$	$1642.3(6)$
Z	4
$D_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-1}\right)$	1.247
$F(000)$	648
$\mu(\mathrm{Mo}-K x)\left(\mathrm{cm}{ }^{-1}\right)$	0.75
Temp. $\left({ }^{\circ} \mathrm{C}\right)$	22 ± 1
Scan width $\left({ }^{\circ}\right)$	$1.42 \pm 0.30 \tan \theta$
$2 \theta_{\text {max }}\left({ }^{\circ}\right)$	55.0
No. of reflections measured	
\quad Total	5349
\quad Unique	5018
No. of refinement variables	428
Final $R: R_{w .}$	$0.063: 0.045$

(22 200) and 658 (36 300); $v_{\text {max }} / \mathrm{cm}^{-1} 2174(\mathrm{C} \equiv \mathrm{C}), 1641(\mathrm{C}=\mathrm{O})$. $1601(\mathrm{C}=\mathrm{C})$ and $994[(E)-\mathrm{HC}=\mathrm{CH}] ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 7.328(4 \mathrm{H}$, dd, $J 15.2$ and $\left.9.8, \mathrm{H}^{\mathrm{B}}\right), 6.76-6.65\left(16 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\mathrm{C}}, \mathrm{H}^{\mathrm{D}} . \mathrm{H}^{2}\right.$ or H^{3}. H^{1} or $\left.\mathrm{H}^{4}\right), 6.576\left(4 \mathrm{H}\right.$, dd, $J 11.2$ and $6.2, \mathrm{H}^{3}$ or $\left.\mathrm{H}^{2}\right), 6.491(4 \mathrm{H}$. d, $\left.J 15.2 . \mathrm{H}^{\mathrm{A}}\right) .6 .342\left(4 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{H}^{4}\right.$ or $\left.\mathrm{H}^{1}\right)$ and $2.760(8 \mathrm{H} . \mathrm{s}$. CH_{2}) $; \delta_{\mathrm{C}}(125.76 \mathrm{MHz}) 188.47(\mathrm{q}, \mathrm{C}=\mathrm{O})$, $142.74(\mathrm{t}), 141.89(\mathrm{t})$. $134.58(\mathrm{t})$. $132.48(\mathrm{t}), 131.03(\mathrm{q}), 130.68(\mathrm{t}), 129.93(\mathrm{t}), 129.78(\mathrm{t})$, 128.87 (t), $113.39(\mathrm{q}), 84.48(\mathrm{q},-\mathrm{C} \equiv), 72.43(\mathrm{q},-\mathrm{C} \equiv)$ and $32.61(\mathrm{~s}$, $\left.\mathrm{CH}_{2}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right) 7.946(4 \mathrm{H}$. dd, $J 14.0$ and 11.8 . $\left.\mathrm{H}^{\mathrm{B}}\right), 7.194\left(4 \mathrm{H}, \mathrm{d}, J 14.6, \mathrm{H}^{\mathrm{D}}\right), 6.965(4 \mathrm{H}$. dd, $J 14.5$ and 11.8. $\left.\mathrm{H}^{\mathrm{C}}\right)$, 6.95-6.84 ($12 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}$ or H^{4}. and H^{2} and H^{3}), $6.758(4 \mathrm{H}$. d, $J 6.0 . \mathrm{H}^{4}$ or $\left.\mathrm{H}^{1}\right) .6 .566\left(4 \mathrm{H}, \mathrm{d}, J 14.0, \mathrm{H}^{\mathrm{A}}\right)$ and $2.900(8 \mathrm{H} . \mathrm{s}$. CH_{2}) (Found: C, 89.9: H, 5.8. $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{O}$ requires C. 90.0: H , 5.6%).

X-Ray crystallography

Crystals of compound $\mathbf{1 1}$ were grown from dichloromethanehexane. The crystal data and parameters for data collection. structural determination and refinement are summarized in Table 1. Diffraction data were collected on a Rigaku AFC7R diffractometer and calculations were performed using the teXsan program. ${ }^{15}$ The structure was solved by direct methods followed by full-matrix least-squares refinement with all nonhydrogen atoms anisotropic and hydrogen atoms isotropic. Reflection data with $\left|F_{\mathrm{o}}\right|>3 \sigma\left(F_{\mathrm{o}}\right)$ were used. The function minimized was $\Sigma \omega\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ where $\omega=\left[\sigma^{2}\left(F_{\mathrm{o}}\right)\right]^{-1}$.

Atomic coordinates, bond lengths and angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.*

Acknowledgements

Financial support by Grant-in-Aid No. 05453029 for Scientific Research from the Ministry of Education. Science and Culture of Japan is gratefully acknowledged.

* For details of the deposition scheme, see 'Instructions for Authors’, J. Chem. Soc., Perkin Trans. 1, 1995, Issue 1.

References

1 (a) P. J. Garratt, Aromaticity, Wiley, New York, 1986, p. 173: (b) J. Ojima, K. Wada and M. Terasaki. J. Chem. Soc., Perkin Trans. I, 1982. 51.
2 T. M. Cresp and M. V. Sargent. Top. Curr. Chem., 1975, 57, 111; A. T. Balaban. M. Banciu and V. Ciorba. Annulenes, Benzo-, Hetero-. Homo-Derivatives, and their Valence Isomers. CRC Press, Florida, 1987, vol. 3, p. 81.
3 H. Higuchi. S. Kiyoto, C. Sakon, N. Hiraiwa, K. Asano, S. Kondo, J. Ojima and G. Yamamoto, Bull. Chem. Soc. Jpn., in the press.

4 Part of this work has been reported in preliminary form; H. Higuchi. S. Kiyoto, C. Sakon, N. Hiraiwa, K. Asano, J. Ojima. K. Inoue and G. Yamamoto, Chem. Lett., 1994, 2291.

5 P. D. Howes. E. LeGoff and F. Sondheimer. Tetrahedron Lett. 1972. 3695.

6 T. M. Cresp. J. Ojima and F. Sondheimer. J. Org. Chem., 1977. 42. 2130.

7 J. Ojima. Y. Shiroishi. K. Wada and F. Sondheimer, J. Org. Chem. 1980, 45, 3564.
8 N. Darby, T. M. Cresp and F. Sondheimer, J. Org. Chem., 1977. 42. 1960.

9 E. Vogel, J. Sombrock and W. Wagemann, Angew. Chem., Int. Ed. Engl., 1975. 14, 564.
10 G. Yamamoto. H. Higuchi, H. Yamamoto and J. Ojima, Bull. Chem. Soc. Jpn., 1992. 65, 2388.
11 G. Yamamoto, H. Higuchi. H. Yamamoto and J. Ojima, Tetrahedron Lett., 1991, 32, 5129; J. Chem. Soc. Perkin Trans. 2. 1982, 479.
12 J. Ojima. Y. Nakagawa, K. Wada and M. Terasaki, J. Chem. Soc., Perkin Trans. I. 1982. 43
13 J. Anthony, C. B. Knobler and F. Diederich, Angew: Chem. Int. Ed. Engl. 1993, 32, 406.
14 See P. J. Garratt and K. Grohmann, in Houben-Weyl, Methoden der Organischen Chemie, Georg Thieme Verlag. Stuttgart. 1972. vol. V. Id, pp. 533-535.
15 teXsan: Crystal Structure Analysis Package. Molecular Structure Corporation (1985 and 1992).

Paper 502471D
Received 19th April 1995
Accepted 26th June 1995

